6th Asian Coating Workshop (ACW2014) May 8, 2014, Kobe

Simulation model of colloidal dispersions with solute transport and adsorption onto the particle surface

<u>Rei Tatsumi</u>, Osamu Koike, and Yukio Yamaguchi Dept. Chem. Sys. Eng., The University of Tokyo

Solute Effects on Dispersions

Addition of solute Figure 5 Addition of solute Figure 5 Addition of solute

Surfactants

surface modification \rightarrow change in adhesion

Electrolytes
 electrical double layer overlap (DLVO theory)

 Polymers Modeling for numerical simulations adsorption layer overlap

Modeling

Time evolutions of particle, solute, fluid

Equations

Model of Adsorption

$$\underline{u_{ex}(r)} = \begin{cases} \infty & r < a \\ 0 & r \ge a \end{cases} \qquad \underline{u_w(r)} = \begin{cases} -\varepsilon & 0 \le r < a + w \\ 0 & r \ge a + w \end{cases}$$

Adsorption energy: $\beta \varepsilon = \varepsilon / RT$ Thickness of adsorption layer: w

6/14

Equation (Concentration)

10/14

Diffusiophoresis

Aggregation by Adsorption

concentration
 average
 0.1 mol /L

11/14

12/14 Shear Flow Particle diameter: d = 100 nmSystem size: $5d \times 5d \times 3d$ $\beta \varepsilon = 0$ $\beta \varepsilon = 0.5, w/d = 0.25$ 1.6 m/s ____ Fr= 0000 slcf=1.500e-07 m Ζ Fr= 0000 slcf=1.500e-07 m Ζ Coord.# Coord.# 12 12 Π Velocity Velocity 0.00e+00 0.00e+00 0.00e+00 0.00e+00 m/s m/s t= 0.000e+00 s t= 0.000e+00 s Adsorption No adsorption

Summery

Simulation model of colloidal dispersions with solute transport and adsorption onto the particle is constructed.

Solute transport

B. C. on diffusion flux \leftarrow Virtual concentration (solute impermeability and adsorption to particle)

Solute adsorption onto the particle

Particle-solute interaction (Square-well potential)

 \rightarrow interactions among particles

Attractive force: Bridging force, Depletion force Repulsive force: Osmotic pressure

Outlook for Application

- Breakup process of particle aggregates with polymer additives
- Drying and concentration process of particle-polymer dispersions

14/19

Diffusiophoresis

particle diameter: d = 100 nm system size: $7d \times 4d \times 4d$ (x: fixed; y, z: periodic)

adsorption layer thickness: w = 0.25denergy: $\beta \varepsilon = 0.5$

concentration average: $1 \mod /L$ gradient: $2 \times 10^9 \mod m^{-4}$

Aggregation by Adsorption

particle diameter: d = 100 nm

adsorption layer thickness: w = 0.25denergy: $\beta \varepsilon = 0.5$

concentration average: 0.1 mol /L

system size: $5d \times 5d \times 3d$ (periodic)

15/19

16/19 **Shear Flow** Particle diameter: d = 100 nmSystem size: $5d \times 5d \times 3d$ $\beta \varepsilon = 0$ $\beta \varepsilon = 0.5, w/d = 0.25$ 1.6 m/s

No adsorption

Adsorption