9th Asian Coating Workshop May 17, 2017, TUAT, Toyko

Numerical simulation of segregation in drying bimodal colloidal suspensions

<u>Rei Tatsumi¹</u>, Takuya Iwao¹, Osamu Koike², Yoshiko Tsuji¹, Yukio Yamaguchi²

> ¹The University of Tokyo ²Products Innovation Association (PIA)

Numerical simulator: **SNAP** (Structure of NAno Particles)

Structure Formation Simulated by SNAP

3

Toward colloid technology from colloid science

SNAP研究会

t= 0.000e+00 s

Today's Topic

Analysis of segregation by SNAP

Particle distribution during Drying

Cardinal et al., AIChE J. (2010).

A Proposed Mechanism

SEM images of the cross section of a dried silica (20 nm) /latex (550 nm) coating

Luo et al., Langmuir (2008).

Drying Curve of Colloidal Suspensions

Drying time

Objective

- Investigation of the segregation in the constant drying rate period
- Analysis using a simple model
 - Brownian motion of particles
 - Free surface moving at constant rate
 - Not included:

gravity, fluid flow, free-surface deformation

Equation of Particles' Brownian Motion

 $\begin{bmatrix} Drag force: -\xi V_i & Stokes' law: \xi = 3\pi\eta d \\ Random force: F_{i\alpha}^{R}(t) \sim N(0, 2\xi k_B T) & Stochastic variables \\ & obeying the Gaussian dist. \end{bmatrix}$

→ Brownian Diffusion: $D = \frac{k_{\rm B}T}{3\pi\eta d}$ Diffusion coefficient in infinite dilution

Not included: Gravity, Transport by fluid flow

Simulation Conditions –

Initial height

 $h_0 = 50d$

6d (3d

• Particle diameter L: d S: $\kappa^{-1}d$

- Initial volume fraction
 L: 0.05 S: 0.05 (Total : 0.1)
- Contact angle $\alpha = 0$
- Diameter ratio (L/S) $\kappa = 1.5, 2, 4$

Periodic boundaries: x, y

• Particle drying Péclet number (L) Pe = $\frac{(\text{Drying rate})}{(\text{Diffusion rate})} = \frac{v_e}{D/d} = \frac{v_e d}{D}$ Simulation: Pe = $0.3 \sim 1000$

Summery

- SNAP enables us to visualize the structure formation of colloidal particles.
- The present analysis suggests that segregation can occur in the constant drying rate period.
- Segregation is enhanced by increasing particle size ratio.
 Segregation is maximized at Péclet number Pe = 1~10.