9th Asian Coating Workshop

May 17, 2017, TUAT, Toyko

Numerical simulation of segregation in drying bimodal colloidal suspensions

Rei Tatsumi ${ }^{11}$, Takuya Iwao¹, Osamu Koike ${ }^{2}$, Yoshiko Tsuji¹, Yukio Yamaguchi²
${ }^{1}$ The University of Tokyo
${ }^{2}$ Products Innovation Association
(PIA)

Colloidal Suspensions in Industrial Use

Kneading
Filtration
Dispersing

Polishing

Mechanism

Numerical simulator: SNAP (Structure of NAn Particles)

Structure Formation Simulated by SNAP

milling

Toward colloid technology from colloid science

SNAP研究会

Today’s Topic

Analysis of segregation by SNAP

Particle distribution during Drying

A Proposed Mechanism

SEM images of the cross section of a dried silica (20 nm) /latex (550 nm) coating

Drying Curve of Colloidal Suspensions

Objective

- Investigation of the segregation in the constant drying rate period
- Analysis using a simple model
- Brownian motion of particles
- Free surface moving at constant rate
- Not included:
gravity, fluid flow, free-surface deformation

Models of SNAP

Detailed model

Equation of Particles' Brownian Motion

Langevin equation $M_{i} \dot{\boldsymbol{V}}_{i}=-\xi \boldsymbol{V}_{i}+\boldsymbol{F}_{i}^{\mathrm{R}}+\boldsymbol{F}_{i}^{\text {contact }}+\boldsymbol{F}_{i}^{\text {capillary }}$
Drag force: $-\xi \boldsymbol{V}_{i}$ Stokes' law: $\xi=3 \pi \eta d$
Random force: $F_{i \alpha}^{\mathrm{R}}(t) \sim N\left(0,2 \xi k_{\mathrm{B}} T\right) \quad \begin{aligned} & \text { Stochastic variables } \\ & \text { obeying the Gaussian dist. }\end{aligned}$
\rightarrow Brownian Diffusion: $D=\frac{k_{\mathrm{B}} T}{3 \pi \eta d} \quad \begin{aligned} & \text { Diffusion coefficient } \\ & \text { in infinite dilution }\end{aligned}$

Contact force

Vertical capillary force

Not included: Gravity, Transport by fluid flow

Simulation Conditions

- Particle diameter L: d S: $\kappa^{-1} d$

Initial height

- Initial volume fraction $h_{0}=50 d$ L: 0.05 S: 0.05 (Total : 0.1)
- Contact angle $\alpha=0$ \downarrow
- Diameter ratio (L/S) $\kappa=1.5,2,4$

Periodic boundaries: x, y

$6 d(3 d)$

Simulation Conditions

- Particle drying Péclet number (L)

$$
\mathrm{Pe}=\frac{(\text { Drying rate })}{(\text { Diffusion rate })}=\frac{v_{\mathrm{e}}}{D / d}=\frac{v_{\mathrm{e}} d}{D}
$$

Simulation: $\mathrm{Pe}=0.3 \sim 1000$

Particle Distribution $(\kappa=2)$

$$
t=t_{\mathrm{f}}
$$

Particle Distribution $(\kappa=4)$

$$
t=t_{\mathrm{f}}
$$

Segregation in Final State

Indicator of segregation: $\chi \equiv\left(\left\langle z_{\mathrm{S}}\right\rangle-\left\langle z_{\mathrm{L}}\right\rangle\right) / h_{\mathrm{f}}$ Average z-coordinate of the particles $\mathbf{L}:\left\langle z_{\mathrm{L}}\right\rangle \mathbf{S}:\left\langle z_{\mathrm{S}}\right\rangle$

Summery

- SNAP enables us to visualize the structure formation of colloidal particles.

The present analysis suggests that segregation can occur in the constant drying rate period.

- Segregation is enhanced by increasing particle size ratio.
- Segregation is maximized at Péclet number $\mathrm{Pe}=1 \sim 10$.

