ISCST 2020, Sept. 22, 2020

Mesoscale Modeling of Colloidal Films Dried with Controlling the Morphology of Aggregated Particles

Rei Tatsumi (UTokyo)
 Osamu Koike (PIA)
 Yukio Yamaguchi (PIA)
 Yoshiko Tsuji (UTokyo)

Material Fabrication from Colloidal Suspensions²

Electrical/Thermal conductivity

Optical property

- Porosity
- Contact network

Structure Formation during Drying

Objective

- Modeling of adhesion to describe the various morphologies of aggregated particles
- Effects of adhesion on structure formation during drying

Diffusion-limited

Reaction-limited

Adhesion: Fixation of contact points (Reaction)

Equations of Particles' Motion

$$M\dot{V} = -\xi V + F^{R} + F^{cnt} + F^{DLVO} + F^{cpl}$$
$$I\dot{\Omega} = -\zeta \Omega + N^{R} + N^{cnt}$$

Hydrodynamic force/torque

Drag + Fluctuations \rightarrow Brownian motion

DLVO force

Capillary force

Vertical push into liquid

TIT TIT

Lateral attraction

Modeling of Adhesion

$$M\dot{V} = -\xi V + F^{R} + F^{cnt} + F^{DLVO} + F^{cpl}$$
$$I\dot{\Omega} = -\zeta \Omega + N^{R} + N^{cnt}$$

How does adhesion affect the structure of particles?

Drying Curve of Colloidal Suspensions

Drying time

Drying rate vs. Structure

Modeling of Falling Drying Rate

Drying Curves

10

Strength of Structure

Drying of colloidal droplets

Compression

Porosity vs. Strength

Particle diameter: d = 20 nm, Zeta potential: -50 mV

-3

 F_{w2}

 $\rightarrow x$

Structure

	Diameter	Porosity	Strength
Slip	10.2	0.07	0.35
Stick	11.5	0.34	0.64

Strong granule with high porosity

Network Formation of Particles

Aqueous suspensions of nanoparticles

Example of network structure: Wakabayashi et al., Langmuir (2007).

Transparent conductive films

How do network structures form?

200 nm

Particle diameter: d = 10 nm

Summary

- Modeling of adhesion between particles
 → Morphologies of aggregate
 - Constraint on relative motions between contacting particles
 → Fixation of contact points
 - Possible factor of adhesion in real systems: Binder addition
- Adhesion → Structures with high porosity formed during drying
 - High permeability (drying rate)
 - High strength
 - Network structures \rightarrow Transparent conductive films