化学工学会第81年会 2016/03/15

## 乾燥による粒子系構造形成における 溶質吸着の影響

Solute adsorption effects on structure formation of colloidal particles during drying

<sup>1</sup>東京大学 環境安全研究センター <sup>2</sup>東京大学 大学院工学研究科化学システム工学専攻 <sup>3</sup>(一般社団法人)プロダクト・イノベーション協会

#### Particle film formation

2/23



Mesoscale Modeling & Direct Numerical Simulation

#### Adsorption of solutes



#### Physical adsorption (Reversible adsorption)

#### Adsorption layer overlapping



Interparticle force

## Model

**Particles:** Newton-Euler equations of motion Hydrodynamic equations Fluid: **Free surface:** Advection equation **Solute:** Advection-diffusion equation Coupled Free surface **Transport** movement **Motion** Flow

#### Objective



#### Drying $\rightarrow$ Recession of free surface

- Arrangement of particles
- Distribution of solute

# Particle-solute adsorption interaction 6/23



Physical adsorption (Reversible):  $\varepsilon \sim RT$ 

#### Solute transport

$$\frac{\partial c}{\partial t} + \boldsymbol{\nabla} \cdot (c\boldsymbol{v}) = -\boldsymbol{\nabla} \cdot \boldsymbol{J}$$

Diffusion flux  $J = -cD\nabla\mu$ 

**Chemical potential** 

$$f = 0$$
gas
$$f = 1$$
liquid

$$\mu = RT \ln \frac{c}{c^0} + f \sum_i u_i + (1 - f) \Delta \mu_g$$

Particle-solute interaction

Excess chemical potential in gas

 $\Delta \mu_{\rm g}/RT \gg 1 \rightarrow$  Impermeability to gas

#### Fluid/Particle motion



#### Free surface





Contact angle

$$\frac{\nabla f}{|\nabla f|} \cdot \widehat{\boldsymbol{n}}_{\mathrm{p}} = \cos \alpha$$



M. Fujita et al., J. Comput. Phys. 281, 421 (2015).

#### Simulation conditions

Particle diameter d = 100 nm

Contact angle  $\alpha = 45^{\circ}$ 

Kinematic viscosity  $\nu = 5.0 \times 10^{-6} \text{ m}^2/\text{s}$ 

Surface tension  $\gamma = 2.0 \times 10^{-2} \text{ N/m}$ Evaporation rate  $v_e = 1.0 \times 10^{-2} \text{ m/s}$ Solute concentration  $c_0 = 5.0 \times 10^{-3} \text{ mol/L}$  Initial volume fraction  $\phi_0 = 30 \text{ vol. }\%$  (3 particle layers)



## Diffusion of particle/solute

$$\frac{\text{Péclet number}}{\text{Pe}_{\alpha}} = \frac{v_{\text{e}}d}{D_{\alpha}}$$

#### **Diffusion coefficient**

Particle:  $D_{\text{prt}} = 10^{-12} \sim 10^{-11} \text{ m}^2/\text{s}$ Solute:  $D_{\text{slt}} = 10^{-10} \sim 10^{-8} \text{ m}^2/\text{s}$ 

$$\frac{\mathrm{Pe}_{\mathrm{prt}}}{\mathrm{Pe}_{\mathrm{slt}}} = \frac{D_{\mathrm{slt}}}{D_{\mathrm{prt}}} \gg 1$$

Approximation:  $Pe_{prt} \rightarrow \infty$ (Non-Brownian particle)

#### Simulation conditions

|             | Adsorption | w/d  | ε/RT | Pe <sub>slt</sub> | $D_{\rm slt}/[{\rm m}^2/{\rm s}]$ |
|-------------|------------|------|------|-------------------|-----------------------------------|
| (a)         | Νο         | 0    | 0    | 0.02              | $5.0 \times 10^{-8}$              |
| <b>(</b> b) | Yes        | 0.25 | 0.5  | 0.02              | $5.0 \times 10^{-8}$              |
| (c)         | Yes        | 0.25 | 0.5  | 0.4               | $2.5 \times 10^{-9}$              |

| Efforts of | (1) Solute adsorption    | (a) $\leftrightarrow$ (b) |
|------------|--------------------------|---------------------------|
| Ellects Of | (2) Solute Péclet number | (b) $\leftrightarrow$ (c) |



#### Solute distribution during drying (without particles)

(2) High solute Péclet number  $\rightarrow$  Concentration gradient



## Diffusiophoresis(拡散泳動) <sup>15/23</sup> (2) High solute Péclet number → Concentration gradient → Diffusiophoresis



## Solute adsorption (1) Solute adsorption $\rightarrow$ Interparticle force



(a)  $\varepsilon/RT = 0$ Non-adsorptive (b)  $\varepsilon/RT = 0.5$ Adsorptive

# Solute Péclet number (2) Concentration gradient → Diffusiophoresis



(b)  $Pe_{slt} = 0.02$  (c)  $Pe_{slt} = 0.4$ Concentration gradient below free surface: Shallow Steep

# Volume fraction (Packing efficiency)<sup>18/23</sup>





#### Solute distribution

20/23

(a) < (b) Attraction by particles</li>
(b) < (c) Low diffusivity of solute</li>





#### **Coordination number**



#### Summary

Solute adsorption effects on structure formation of colloidal particles during drying

- Solute adsorption → Interparticle force
   Particle ordering
- High solute Péclet number →
   Concentration gradient → Diffusiophoresis

Increase in particle migration to free surface  $\rightarrow$  Decrease in packing efficiency