化学工学会第48回秋季大会 2016/09/06

二峰性微粒子分散液の乾燥下構造形成 の直接数値計算

Direct numerical simulation of structure formation in drying bimodal colloidal suspensions

〇辰巳 怜¹, 小池 修³, 辻 佳子^{1,2}, 山口由岐夫³

¹東京大学 環境安全研究センター ²東京大学 大学院工学研究科化学システム工学専攻 ³(一般社団法人)プロダクト・イノベーション協会

Particle film formation

Colloidal suspensions Coating, Drying Functional thin films

2/21

Particle configuration

Physical properties of film

Mesoscale Modeling & Direct Numerical Simulation

Capillary force

3/21

Force induced by meniscus

Fujita et al., Appl. Phys. Express (2013). Fujita et al., J. Comput. Phys (2015).

Jenkins et al., J. Colloid Interface Sci. (2012)

Objective

- Structure formation in drying bimodal colloidal suspensions
- Effects of particle wettability and interactions

Segregation

Mixing

- Mesoscale model
- Direct Numerical Simulation (DNS)

Model

Particles:Newton-Euler equations of motionFluid:Hydrodynamic equationsCoupledFree surface:Advection equation

to get detailed information

Fluid motion

Mass conservation

 $\boldsymbol{\nabla}\cdot\boldsymbol{\boldsymbol{\nu}}=0$

Stress tensor

$$\boldsymbol{\sigma} = -p\boldsymbol{I} + \eta [\boldsymbol{\nabla}\boldsymbol{v} + (\boldsymbol{\nabla}\boldsymbol{v})^T]$$

Direct Numerical Simulation

- Discretization
- Diffused boundary

Particle motion

Free surface

Advection eq.

$$\frac{\partial f}{\partial t} + \boldsymbol{v}_{sf} \cdot \boldsymbol{\nabla} f = 0$$

Evaporation mass flux on free surface

$$\rho(\boldsymbol{v} - \boldsymbol{v}_{sf}) \cdot \hat{\boldsymbol{n}} = (1 - \Phi)\rho v_{e}$$

$$\checkmark$$
Velocity of free surface

$$\boldsymbol{v}_{sf} = \boldsymbol{v} - (1 - \Phi) v_{e} \hat{\boldsymbol{n}}$$

Contact angle
$$\frac{\nabla f}{|\nabla f|} \cdot \hat{n}_{p} = \cos \alpha$$

DNS: Level set method

Fujita et al., J. Comput. Phys. (2015).

Simulation conditions

10/21

Particle diameter Large: 200 nm(d) Small: 100 nm(d/2)Final substrate coverage with particles L: 0.3 S: 0.3

Fluid: Water Evaporation rate 2.0×10^{-2} m/s (v_e) Salt 1.0×10^{-4} mol/L Temperature 293 K

Order estimation of force

DLVO force

Electrical double layer repulsion

$$F_{\rm EDL} \sim \frac{n_{\rm salt} k_{\rm B} T d}{\kappa} \sim 10^{-12} \ {
m N}$$

Van der Waals attraction
 $F_{
m vdW} \sim \frac{A}{d} \sim 10^{-13} \ {
m N}$

11/21

Capillary force
$$F_{\text{cap}} \sim \gamma d \sim 10^{-8} \text{ N}$$

 $F_{\rm cap} \gg F_{\rm EDL} \sim F_{\rm vdW}$

Simulation conditions

	Contact angle		Zeta potential /mV	
	Large	Small	Large	Small
(a)	30°	30°	-50	-50
(b)	90°	30°	-50	-50
(c)	30°	30°	50	-50

(2) Interaction: DLVO force

(a) \leftrightarrow (c)

Result of (a)

13/21

Meniscus formation \rightarrow Capillary force \rightarrow Aggregation

Segregation

(1) Wettability (Contact angle)

(a) L: 30° S: 30°

(b) L: 90° S: 30°

Nondimensional Boundary Length

$$NBL = 1 - \frac{N_{average}}{N_{max}}$$

N: Coordination number

15/21

 $N_{\rm max} = 6$ (Close packing in 2D)

 $0 \le \text{NBL} \le 1$ Close-packed Dispersed
NBL for L-L / S-S coordination \Rightarrow Packing domain size
Segregation Mixing

(1) Wettability

17/21

Meniscus formation \rightarrow Capillary force \rightarrow Aggregation

Meniscus is formed around a large (small) particle when liquid layer thickness is smaller than $h_{\rm L}$ ($h_{\rm S}$).

(2) Interaction

(a) L: -50 mV S: -50 mV (c) L: 50 mV S: −50 mV 19/21

Z

(2) Interaction

Summary

structure formation in drying bimodal colloidal suspensions

Decrease in wettability of L particles

Segregation

L-S attractive interaction

Mixing