SCEJ 51st Autumn Meeting Sept. 25, 2020

Structure of dried colloidal films controlled by the morphology of aggregated particles

微粒子分散液の凝集状態による乾燥粒子膜の構造制御

Material Fabrication from Colloidal Suspensions²

Electrical/Thermal conductivity

Optical property

- Porosity
- Contact network

Drying Curve of Colloidal Suspensions

3

Drying time

Drying rate vs. Structure

Objective

- Modeling of adhesion to describe the various morphologies of aggregated particles
- Effects of adhesion on structure formation during drying

Diffusion-limited

Reaction-limited

Adhesion: Fixation of contact points (Reaction)

Equations of Particles' Motion

- Hydrodynamic force/torque
 - Drag + Fluctuations \rightarrow Brownian motion

DLVO force

QLVO potentialElectric double layer repulsionhVan der Waals attraction

Capillary force

Vertical push into liquid

Contact angle $\alpha = 0$

Modeling of Adhesion

Contact force/torque

Simulation Conditions

Particles

- Diameter d = 20 nm
- Initial volume fraction 10 vol%
- Zeta potential -50 mV
- Contact Slip / Stick

Liquid: water

Initial particle drying Péclet number

Periodic boundaries x, y

Modeling of Falling Drying Rate

Drying Curves

Growth of Particle Layer

Summary

- ♦ Modeling of adhesion between particles
 → Morphologies of aggregate
 - Constraint on relative motions between contacting particles
 → Fixation of contact points
 - Possible factor of adhesion in real systems: Binder addition
- Effects of adhesion on structure formation
 - Tree-like aggregates
 - Structures with high porosity formed during drying
 → High permeability (drying rate)